Placement Exam for MA129

September 5, 2025

Riemann Sums

10 points for scoring at least 2 out of 4.

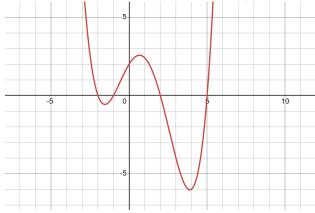
[A] Which of the following represents a right-hand Riemann approximation for the area under the curve $f(x) = x^2$ between x = 0 and x = 5 using 3 rectangles?

- (i) $\sum_{n=1}^{3} n^2$
- (ii) $\sum_{n=0}^{5} \frac{5}{3}n^2$
- (iii) $\sum_{n=0}^{3} \frac{5}{3} \left(\frac{5n}{3} \right)^2$
- (iv) $\sum_{n=0}^{2} \frac{5}{3} \left(\frac{5n}{3} \right)^2$
- (v) $\sum_{n=1}^{3} \frac{5}{3} \left(\frac{5n}{3} \right)^2$

[B] Suppose f(x) is a decreasing function on [a,b]. A midpoint Riemann approximation of $\int_a^b f(x) dx$ will be an

- (i) Over-approximation
- (ii) Under-approximation
- (iii) Exact answer
- (iv) Not enough information

[C] Below is the graph of a function g(x). Use this graph to approximate M_3 on the interval [0,6] (the midpoint Riemann sum with 3 rectangles).



- (i) 13
- (ii) -15
- (iii) -3

- (iv) 0
- [D] True or False: In a general Riemann sum, rectangles must all have the same width.
 - (i) TRUE
- (ii) FALSE

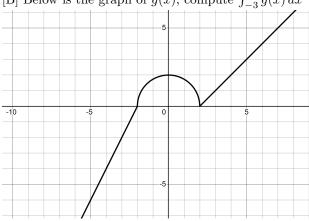
Definition of the Definite Integral

18 points for scoring at least 3 out of 4.

[A] Which of the following is the definition of $\int_2^4 x \, dx$?

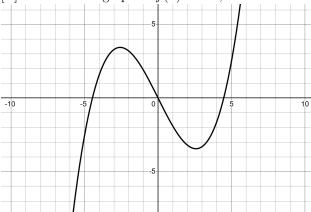
- (i) $\frac{x^2}{2} + c$
- (ii) $\lim_{n\to\infty} \sum_{i=1}^n \frac{2}{n} \left(2 + \frac{2i}{n}\right)$
- (iii) $\frac{4^2}{2} \frac{2^2}{2}$
- (iv) $\lim_{n\to\infty} \sum_{i=1}^n \frac{2}{n}(i)$

[B] Below is the graph of g(x), compute $\int_{-3}^{5} g(x) dx$



- (i) $\frac{11}{2} + 2\pi$
- (ii) $\frac{7}{2} + 4\pi$
- (iii) $\frac{7}{2} + 2\pi$
- (iv) $11 + 2\pi$

[C] Based on the graph of f(x) below, which of the following integrals returns the largest number?



(i) $\int_{-2}^{0} f(x) \, dx$

- (ii) $\int_{-2}^{2} f(x) dx$
- (iii) $\int_{-4}^{2} f(x) \, dx$
- (iv) $\int_{-4}^{0} f(x) \, dx$
- (v) $\int_{-4}^{4} f(x) dx$
- [D] Suppose we know $\int_0^1 f(x) dx = -2$ and $\int_1^5 f(x) dx = 6$. What is $\int_5^0 7f(x) dx$?
 - (i) -8
 - (ii) -4
- (iii) 28
- (iv) -28
- (v) 56

Fundamental Theorem of Calculus

20 points for scoring at least 3 out of 4.

[A] Compute the derivative of the following function: $F(x) = \int_x^2 e^{t^3 + 2t + 1} dt$

(i)
$$e^{x^3+2x+1}$$

(ii)
$$-e^{x^3+2x+1}$$

(iii)
$$(3x^2+2)e^{x^3+2x+1}$$

(iv)
$$-(3x^2+2)e^{x^3+2x+1}$$

[B] Evaluate the following definite integral: $\int_1^3 \frac{2}{x} - x^4 + 4 dx$

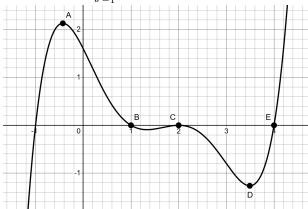
(i)
$$2\ln(3) - \frac{242}{5}$$

(ii)
$$-\frac{2}{9} - 102$$

(iii)
$$2\ln(3) - \frac{242}{5} + 8$$

(iv)
$$-\frac{242}{5} + 10 - \frac{2}{9}$$

[C] Let $G(x) = \int_{-1}^{x} g(t) dt$ where g(t) is shown below. G(x) has a local minimum at what x value(s)?



- (i) A
- (ii) B
- (iii) C
- (iv) D
- (v) E

[D] Evaluate the definite integral $\int_0^4 f(x) dx$ where

$$f(x) = \begin{cases} 3 + 5x & \text{if } x < -2\\ \frac{2}{x+3} & \text{if } -2 \le x \le 3\\ \sqrt{x} & \text{if } x > 3 \end{cases}$$

6

- (i) $\frac{28}{3} + 2\ln(6) 2\sqrt{3}$
- (ii) $\frac{16}{3} + \ln(6) 2\sqrt{3}$
- (iii) $\frac{28}{3} + 2\ln(6)$
- (iv) 52

Integration Techniques

25 points for scoring at least 3 out of 5.

- [A] Evaluate the following integral: $\int \frac{\cos(\sqrt{x})}{\sqrt{x}} dx$
 - (i) $\frac{1}{2}\sin(\sqrt{x}) + c$
 - (ii) $2\sin(\sqrt{x}) + c$
- (iii) $\sin(\sqrt{x}) + c$
- (iv) $\frac{\sin(\sqrt{x})}{\frac{2}{3}x^{3/2}} + c$
- (v) $\sin(x) + c$
- [B] Evaluate the following integral: $\int t(\ln t)^2 dt$
 - (i) $\frac{t^2}{2}(\ln t)^2 \frac{t^2}{2}\ln t \frac{t^2}{4} + c$
- (ii) $\frac{t^2}{2}(\ln t)^2 \frac{t^3}{3}\ln t + \frac{t^3}{9} + c$
- (iii) $\frac{t^2}{2}(\ln t)^2 \frac{t^2}{2}\ln t + \frac{t^2}{4} + c$
- (iv) $\frac{(\ln t)^3}{3} + c$
- [C] Evaluate the following integral: $\int \cot(\theta) \csc^5(\theta) \, d\theta$
 - (i) $-\frac{\csc^5 \theta}{5} + c$
 - (ii) $\frac{\csc^5\theta}{5} + c$
- (iii) $-\frac{\csc^6\theta\cot^\theta}{10} + c$
- (iv) $\csc^4 \theta + c$
- [D] Evaluate the following integral: $\int \frac{x^2}{\sqrt{x^2-9}} dx$
 - (i) $3\sqrt{x^2-9}+c$
 - (ii) $3\sec^{-1}(x/3) \frac{9}{\sqrt{x^2 9}} + c$
- (iii) $3 \ln \left| \frac{\sqrt{x^2 9}}{3} \right| + c$

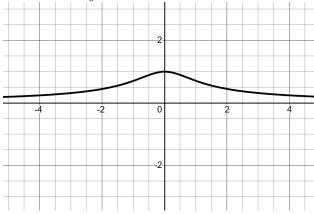
(iv)
$$3 \ln \left| \frac{x}{3} \cdot \frac{\sqrt{x^2 - 9}}{3} \right| - \frac{\sqrt{x^2 - 9}}{x} + c$$

- [E] Evaluate the following integral: $\int \frac{3}{2x^2 + x} dx$
 - (i) $3 \ln |x| 6 \ln |2x + 1| + c$
 - (ii) $-6 \ln |x| + 3 \ln |2x + 1| + c$
- (iii) $-6 \ln |x| + \frac{3}{2} \ln |2x + 1| + c$
- (iv) $3 \ln |x| 3 \ln |2x + 1| + c$

Volumes of Solids of Revolutions

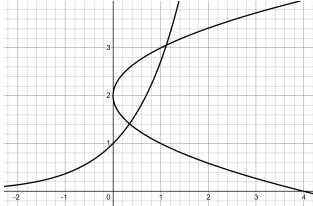
15 points for scoring at least 2 out of 3.

[A] Which of the following represent the correct antiderivative of the function used to find the volume of the solid obtained by rotating the region bounded by $y=0, y=\frac{1}{\sqrt{x^2+1}}$ (shown below), x=-2, x=2 about the line y=2.



- (i) $\pi(4x + \tan^{-1}(x))$
- (ii) $\pi(2x \tan^{-1}(x))$
- (iii) $\pi(2x + \tan^{-1}(x))$
- (iv) $\pi(\tan^{-1}(x))$

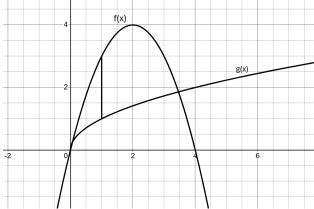
[B] Which of the following integrals represent the volume of the solid obtained by rotating the region bounded by $x = (y - 2)^2$ and $y = e^x$ (shown below) about the line x = 0?



- (i) $\pi \int_{1.41}^{3.057} (\ln(y))^2 (y-2))^4 dy$
- (ii) $2\pi \int_{.345}^{1.117} y \left(\ln(y) (y-2)^2 \right) dy$
- (iii) $\pi \int_{345}^{1.117} (\sqrt{x} + 2)^2 (e^x)^2 dx$
- (iv) $2\pi \int_{1}^{3.057} y \left(\ln(y) (y-2)^2 \right) dy$

(v)
$$\pi \int_{.345}^{1.117} (\sqrt{x} + 2 - e^x)^2 dx$$

[C] The result of rotating the vertical line shown below about the line y=4 is a



- (i) A cylindrical shell with height f(x) g(x) and radius x
- (ii) A washer with outer radius 4-f(x) and inner radius 4-g(x)
- (iii) A washer with outer radius f(x) + 4 and inner radius g(x) + 4
- (iv) A cylindrical shell with height f(x) g(x) and radius x-4
- (v) A washer with with outer radius 4-g(x) and inner radius 4-f(x)

Other Applications of the Definite Integral

6 points for scoring at least 1 out of 3.

[A] Find the volume of the solid whose base is a triangle with vertices (0,0), (-6,3), (3,3) and whose cross-sections perpendicular to the y-axis are squares.

- (i) $\frac{27}{4}$
- (ii) $\frac{243}{12}$
- (iii) $\frac{243}{12} + 162$
- (iv) $\frac{27}{4} 27$

[B] Calculate the arc-length of $y=x^{3/2}$ on the interval [1,2]

- (i) 4.693
- (ii) 1.863
- (iii) 1.351
- (iv) 2.086

[C] Determine if $\int_0^\infty x e^{-x^2}$ converges, and if so, evaluate it.

- (i) $\frac{1}{2}$
- (ii) 2
- (iii) 0
- (iv) -frac12
- (v) -2
- (vi) Diverges

Differential Equations

6 points for scoring at least 2 out of 2.

- [A] Find the solution to the differential equation $\sqrt{1-x^2}y'=xy$ that satisfies y(0)=1.
 - (i) $e^{\sqrt{1+x^2}} 1$
- (ii) $e^{\sqrt{1+x^2}-1}$
- (iii) $e^{\sqrt{1+x^2}} 4$
- (iv) $e^{\sqrt{1+x^2}-4}$
- (v) $e^{\sqrt{1+x^2}} 2$
- (vi) $e^{\sqrt{1+x^2}-2}$
- [B] Which of the *n*-values below make $y=x^n$ a solution to $y''-\frac{12y}{x^2}=0$?
 - (i) 2
 - (ii) 3
- (iii) 4
- (iv) None of the above